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Bragg scattering by a line array of small cylinders
in a waveguide. Part 1. Linear aspects
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Motivated by potential applications for offshore airports supported on vertical piles,
we report a theory of wave diffraction by a periodic array of circular cylinders. The
simple case of normal incidence on a rectangular array is studied here, which is
equivalent to a line array along the centre of a long channel. An asymptotic theory
is developed for cylinders much smaller than the incident wavelength, which is com-
parable to the cylinder spacing. Focus is on Bragg resonance near which scattering is
strong. A combination of the method of multiple scales and the Bloch theorem leads
to simple evolution equations coupling the wave envelopes. Dispersion of transient
wave envelopes is investigated. Scattering of detuned waves by a large but finite
number of cylinders is investigated for frequencies in and outside the band gap.
Quantitative accuracy is assessed by comparisons with numerical computations via
finite elements. The analytical theory prepares the ground for nonlinear studies and
may facilitate future inclusion of real-fluid effects such as vortex shedding.

1. Introduction
Because land area is limited in many highly populated countries, offshore airports

are likely to become more common. Osaka and Tokyo have airstrips built on man-
made islands, and research has been conducted on floating airstrips in deep sea, similar
in concept to the Mobile Offshore Bases (MOB) contemplated for military purposes.
Future designs will probably include airstrips rigidly supported above the water
surface by a periodic array of piles. As in the construction of oil-drilling platforms,
the pile diameter should be small compared to both the spacing and the dominant
wavelength. Prediction of wave forces on these piles requires accurate modelling of
scattering (linear and nonlinear) and vortex shedding. Of these two hydrodynamic
aspects, wave scattering can be dealt with in the framework of potential theory;
vortex shedding can only be treated by incorporating empirical information.

As the pile spacing is likely to be comparable with the incident wavelength, Bragg
resonance, a common feature of wave propagation through a periodic medium, is
relevant. Some basic physics of Bragg resonance can be revealed by studying an
infinite array of scatterers, in particular, the band structure of the dispersion relation
(see e.g. Kittel 2004 and Aschcroft & Mermin 1976 on solid-state physics and
Joannopoulos, Meade & Winn 1995 on photonic crystals). When a monochromatic
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incident wavetrain strikes a periodic array of finite extent, multiple scattering can
excite Bragg resonance if the frequency falls within one of the band gaps.

Many solution techniques exist in the theory of multiple scattering in linear wave
physics. Mathematical aspects of exact methods for general geometries and frequencies
can be found in Linton & Evans (2001) or Martin (2006). For water waves Ohkusu
(1970), Srokosz & Evans (1979) and Evans (1990) have developed approximate
theories for a number of vertical cylinders spaced at a distance D much greater than
the wavelength, i.e. kD � 1. Approximations are also possible when the wavelength is
much greater than the scatterer dimension and spacing (e.g. Hu & Chan (2005)). In this
limit the physical consequence is an averaged index of refraction. For numerically
accurate (or exact) predictions without restrictions of spacing and scatterer size,
most existing strategies reduce to the numerical solution of truncated series or of
boundary-integral equations (see Maystre, Saillard & Tayeb 2001, for a recent survey
for electromagnetic waves). For a periodic array of identical circular cylinders, Spring
& Monkmeyer (1974) used local polar coordinates and expressed the scattered waves
as eigenfunction expansions. The boundary conditions on the cylinders led to an
infinite matrix equation for the expansion coefficients, to be solved numerically. By
using Graf’s addition theorem for Bessel functions, Linton & Evans (1990) improved
the convergence of the series and expedited the computation of the matrix system.
For the scattering of an obliquely incident wave by a large number of cylinders in
a periodic and linear array, Maniar & Newman (1997) used integral equations and
predicted the resonance of trapped modes found by Callan, Linton & Evans (1991).
In the mathematically similar problem of acoustics, Linton & Martin (2004) gave a
theory for a semi-infinite array of small sound-soft (perfectly absorbing) cylinders.
Detailed numerical results revealing the resonance of trapped modes were described
for head-sea diffraction by Linton, Porter & Thompson (2007). For three-dimensional
scattering involving more general geometry, a powerful semi-numerical method has
been devised by Kagemoto & Yue (1986) for finite depth and extended by Goo &
Yoshida (1990), Peter & Meylan (2004) and Peter, Meylan & Linton (2006).

Of special interest is the case of resonant scattering, which is difficult to treat by
numerical schemes designed for general frequencies. For an infinite line of circular
cylinders Linton & Thompson (2007) gave a theory for general incidence and obtained
numerical results at exact resonances based on series-expansion solutions. An approxi-
mate theory has been given by Kriegsmann (2004) for the normal incidence on an
infinite grating with narrow openings between rectangular blocks. Large transmission
is found at resonances. In the case of small scatterers (compared with the spacing
and the wavelength), asymptotic theories are possible by the perturbation method of
multiple scales. The heuristic basis is that a scattered wave can be resonated to the level
of the incident wave only if the number of small scatterers is large. Hence two sharply
contrasting length scales must exist. For surface water waves over parallel sand bars
Mei (1985) derived envelope equations† governing the slow and coupled evolution
of incident and reflected waves near and at Bragg resonance. Theoretical extensions
with experimental confirmations have been reported by Hara & Mei (1987); Mei,
Hara & Naciri (1988); Rey, Guazzelli & Mei (1996) and Naciri & Mei (1988). There
is evidence that these asymptotic theories can be reasonably accurate even beyond
the immediate neighbourhood of resonance, when compared with calculations based
on fuller theories (Miles & Chamberlain 1998).

† Similar results are known as the coupled-mode equations in one-dimensional optics of layered
media (Yariv & Yeh 1984).
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Figure 1. A line of periodic circular cylinders in a channel.

In this two-part series we shall ignore vortex shedding and develop an asymptotic
theory of one-dimensional wave propagation through a linear array of vertical
cylinders along the centreline of a long channel. The mathematical problem is two-
dimensional and is identical to that for a planar array of cylinders along perpendicular
lines in the channel with the incident wave along one set of lines. Focus will be
on the neighbourhood of Bragg resonance in which the physics and the practical
implications are the most interesting. The sea depth H will be taken to be constant
and the cylinder radius a is small compared to the spacing D, the channel width W

and the characteristic wavelength, i.e.

ka = µ � 1, (kD, kW, kH ) = O(1). (1.1)

The wave steepness is assumed to be small kA � 1. As the cumulative effect of Bragg
resonance can alter the leading-order physics after a distance much longer than a
typical wavelength, the asymptotic method of multiple-scale expansions widely used
in mechanics will be employed to derive equations for the slow variation of the wave
envelopes. Analytical solutions will be obtained for physical insight. This Part 1 is
restricted to linear aspects. Numerical accuracy will be verified by a finite element
method. The nonlinear effects of long waves generated by two trains of short waves
of nearly equal frequencies will be studied in Part 2. Two-dimensional propagation
through a planar array of periodic cylinders will be reported elsewhere.

2. Linearized boundary value problem
Referring to figure 1, we consider a plane wave incident upon a long line of bottom-

mounted vertical cylinders of radius a in the central plane of an open channel of width
W and depth H . A large but finite number of cylinders are spaced at equal distance D

apart along the channel axis. Let a Cartesian coordinate system be chosen such that
the (x, y)-plane coincides with the still free surface and z points vertically upward.
The coordinates of the cylinder centres are xo

m = mD, yo
m = 0, m =0, ±1, ±2, . . . , ±N .

Near cylinder m, the local polar coordinates (rm, θm) are defined by

x − xo
m = rm cos θm, y = rm sin θm. (2.1)

Let the fluid be incompressible and inviscid and the flow be irrotational. A plane
wave of amplitude A0 and angular frequency ω arrives from x ∼ −∞. The velocity
potential is governed by Laplace’s equation

∇2Φ +
∂2Φ

∂z2
= 0, (2.2)

in the fluid, where ∇2 is the horizontal Laplacian. Restricting to infinitesimal waves,
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the linearized dynamic and kinematic free-surface conditions are

∂Φ

∂t
+ gζ = 0,

∂ζ

∂t
=

∂Φ

∂z
, z = 0, (2.3)

where ζ is the free-surface elevation. These can be combined to give

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0 on z = 0. (2.4)

We also require no-flux boundary conditions on all cylinder surfaces,

∂Φ

∂rm

= 0, rm = a, m = 0, ±1, ±2, . . . , ±N, (2.5)

on the channel sidewalls,

∂Φ

∂y
= 0, y = ±W

2
, (2.6)

and on the seabed,

∂Φ

∂z
= 0, z = −H, (2.7)

Since the geometry is D-periodic on the short scale comparable to the wavelength,
Bloch’s theorem, well-known in crystallography and solid state physics (Kittel 2004),
must apply to the potential on the short scale, i.e. Φ is of the form

Φ = F+(x, y, z, t)eikx + F−(x, y, z, t) e−ikx (2.8)

where F±(x, y, z, t) are D-periodic in x, although they may vary slowly over the much
longer scale parametrically. In addition the radiation condition is required so that the
scattered waves are outgoing from the region of scatterers.

It will be shown in Part 2 that the linearized free-surface conditions are valid if the
wave steepness is small enough that ε = kA0 � O(µ2), implying A0/a = kA0/ka = ε/

µ � O(µ) � 1.

3. Multiple-scale expansions
As is well known, when the spacing D between successive scatterers is half-integral

multiples of the incident wavelength, i.e.

kD = nBπ (3.1)

where nB is a positive integer, constructive interference gives rise to strong reflection.
Since the reflection coefficient from a single cylinder is of O(µ2), the accumulated
effects over N cylinders becomes of O(1) when N =O(1/µ2), i.e. over the distance
x = O(1/kµ2). It follows that strong reflection evolves over the dimensionless length
scale k(x, y) = O(1/µ2). The multiple-scale perturbation method (Nayfeh 1973; Cole
& Kevorkian 1981) is therefore appropriate.

As we shall also examine the physical effect of small detuning in wavenumber µ2K

and frequency µ2Ω , which are related by the dispersion relation, the following slow
time and space coordinates are introduced:

x1 = µ2x, t1 = µ2t. (3.2)

In terms of these, detuning and its effects are represented by the slow variation of the
complex amplitudes, while (3.1) implies perfect tuning at the leading order only. The
wave potential is expanded as follows:

Φ = {φ1 e−iωt + c.c.} + µ2{φ2 e−iωt + c.c.} + · · · , (3.3)
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where φ1, φ2, . . . are functions of x, y, z; x1, t1, and c.c. denotes the complex conjugate
of the preceding term.

At the leading order O(µ0), φ1 is governed by

∇2φ1 +
∂2φ1

∂z2
= 0 in the fluid domain, (3.4)

∂φ1

∂z
− ω2

g
φ1 = 0 on z = 0, (3.5)

∂φ1

∂y
= 0 on y = ±W

2
, (3.6)

∂φ1

∂z
= 0 on z = −H. (3.7)

Owing to the smallness of the cylinder radius relative to the wavelength, scattering
is of O(µ2) and unimportant. Thus φ1 represents solely the sum of the incident and
the reflected waves, in anticipation of the accumulated effect of resonance over a
long scale. In particular the error by ignoring the no-flux boundary condition on the
cylinders is of O(µ2), and will be corrected at the next order by φ2. Thus the formal
non-trivial solution of the first-order homogeneous problem consists simply of two
plane waves:

φ1(x, y; x1, t1) = Z(z)(A+(x1, t1) eikx + A−(x1, t1) e−ikx), (3.8)

where A+(x1, t1) and A−(x1, t1) are respectively the unknown amplitudes of the incident
and reflected waves. Z(z) describes the vertical profile

Z(z) = − ig

2ω

cosh k(z + H )

cosh kH
. (3.9)

The frequency ω is related to the wavenumber k by the dispersion relation:

ω2 = gk tanh kH, (3.10)

where k satisfies the Bragg condition (3.1). Since A+ and A− are independent of x,
Bloch’s condition is trivially satisfied.

4. Second-order problem
Upon substituting (3.3) and (3.8) into (2.2) and (2.4)–(2.7), we obtain the boundary

value problem for the second-order potential:

∇2φ2 +
∂2φ2

∂z2
= −2

∂2φ1

∂x∂x1

in the fluid domain, (4.1)

∂φ2

∂z
− ω2

g
φ2 =

2iω

g

∂φ1

∂t1
on z = 0, (4.2)

∂φ2

∂rm

= − 1

µ2

∂φ1

∂rm

on rm = a, m = 0, ±1, . . . , (4.3)

∂φ2

∂y
= 0 on y = ±W

2
, (4.4)

∂φ2

∂z
= 0 on z = −H. (4.5)

In addition we require that φ2 satisfies Bloch’s condition (2.8).
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Note that the small error introduced earlier by neglecting the boundary condition
on the cylinder is now remedied at the second order by (4.3). Despite the appearance
of the large factor 1/µ2, it will be seen shortly that both sides of the condition are of
comparable order. From (3.8) we obtain by differentiation and Taylor expansion,

− 1

µ2

∂φ1

∂rm

∣∣∣∣
rm=a

= −Z(z)

µ2

∂

∂rm

{
A+ eik(xo

m+rm cos θm) + A− e−ik(xo
m+rm cos θm)

}
= −Z(z)

µ2

{
A+ eikxo

m ik cos θm eika cos θm − A− e−ikxo
m ik cos θm e−ika cos θm

}
= −kZ(z)

{
eikxo

mA+

[
i cos θm

µ2
− ka cos2 θm

µ2
+

O((ka)2)

µ2

]

+ e−ikxo
mA−

[
−i cos θm

µ2
− ka cos2 θm

µ2
+

O((ka)2)

µ2

]}
. (4.6)

Since ka = µ and kxo
m = mkD =mnBπ according to (3.1), it follows that eimkD = e−imkD .

Equation (4.6) may be written

− 1

µ2

∂φ1

∂rm

∣∣∣∣
rm=a

= −eimkDkZ(z)

{
A+

[
i cos θm

µ2
− 1 + cos 2θm

2µ

]

+ A−
[

− i cos θm

µ2
− 1 + cos 2θm

2µ

]}
+ O(µ0). (4.7)

The large boundary value on the right is effective only over a small cylinder of
circumference of order ka = O(µ) relative to the wavelength, hence the integrated
effect is of the same order as φ2.

The second-order velocity potential is governed by an inhomogeneous Laplace
equation (4.1) subject to the inhomogeneous condition (4.2) on the free surface and
(4.3) on the cylinder surface. In view of linearity, we decompose φ2 into two parts:

φ2 = φ
(1)
2 + φ

(2)
2 , (4.8)

where φ
(1)
2 satisfies the homogeneous Laplace equation and free-surface condition and

the inhomogeneous cylinder surface boundary condition. No condition is imposed
on the channel walls. On the other hand φ

(2)
2 must satisfy the remaining inhomo-

geneous conditions. In particular it must satisfy

∂φ
(1)
2

∂y
+

∂φ
(2)
21

∂y
= 0 on y = ±W

2
(4.9)

on the channel walls. Let us derive the solution for the first part.

4.1. Solution for φ
(1)
2

The potential φ
(1)
2 is defined by the following boundary value problem:

∇2φ
(1)
2 +

∂2φ
(1)
2

∂z2
= 0 in the fluid domain, (4.10)

∂φ
(1)
2

∂z
− ω2

g
φ

(1)
2 = 0 on z = 0, (4.11)

∂φ
(1)
2

∂z
= 0 on z = −H, (4.12)
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∂φ
(1)
2

∂rm

= −kZ(z) eimkD

{
A+

(
i cos θm

µ2
− 1 + cos 2θm

2µ

)

+ A−
(

− i cos θm

µ2
− 1 + cos 2θm

2µ

)}
on rm = a, m = 0, ±1, ±2, . . . ± N. (4.13)

Bloch’s condition (2.8) is required. The no-flux condition on the sidewalls y = ±W/2
will be imposed on the sum φ

(1)
2 + φ

(2)
2 later but not on φ

(1)
2 .

We now propose a series solution of the following form:

φ
(1)
2 = Z(z)χ(x, y), (4.14)

where

χ(x, y) =

N∑
m=−N

{[
BY

mY0(krm) + BJ
mJ0(krm)

]
+

[
CY

mY1(krm) + CJ
mJ1(krm)

]
cos θm

+
[
DY

mY2(krm) + DJ
mJ2(krm)

]
cos 2θm

}
(4.15)

so that φ
(1)
2 satisfies the Laplace equation (4.10) and the boundary conditions (4.11)

and (4.12). Since for a small argument

Y ′
0(ka) ∼ 2

πka
, Y ′

1(ka) ∼ 2

πk2a2
, Y ′

2(ka) ∼ 8

πk3a3
(4.16)

are large, the coefficients BY
m, CY

m and DY
m will be determined by the boundary

conditions on the cylinder surface. It is straightforward to verify that

BY
m =

π

4
eimkD(A+ + A−), (4.17a)

CY
m = −πi

2
eimkD(A+ − A−), (4.17b)

DY
m =

µ2π

16
eimkD(A+ + A−) = O(µ2). (4.17c)

On the other hand, the coefficients BJ
m, CJ

m, DJ
m will be chosen so that the series of χ

and hence φ
(1)
2 is Bloch-periodic and bounded for large N . Details of this reasoning

are lengthy and given in Appendix A. We simply cite the result, after omitting a series
of O(µ2):

χ(x, y) =
π

4
(A+ + A−)

N∑
m=−N

eimkD(Y0(krm) + J0(krm))

− πi

2
(A+ − A−)

N∑
m=−N

eimkD(Y1(krm) + J1(krm)) cos θm + O(µ2). (4.18)

With this result, φ
(1)
2 is known from (4.14).

4.2. Boundary-value problem for φ
(2)
2

The boundary-value problem for φ
(2)
2 is given by

∇2φ
(2)
2 +

∂2φ
(2)
2

∂z2
= −2

∂2φ1

∂x∂x1

in the fluid domain, (4.19)

∂φ
(2)
2

∂z
− ω2

g
φ

(2)
2 =

2iω

g

∂φ1

∂t1
on z = 0, (4.20)
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Figure 2. The unit cell surrounding a cylinder. C0 is the waterline of the cylinder.

∂φ
(2)
2

∂y
= −∂φ

(1)
2

∂y
on y = ±W

2
, (4.21)

∂φ
(2)
2

∂z
= 0 on z = −H. (4.22)

On the cylinder surface, we have, by using (4.3) and (4.8),

∂φ
(2)
2

∂rm

= −∂φ
(1)
2

∂rm

− 1

µ2

∂φ1

∂rm

on rm = a. (4.23)

Substituting (4.13) and (4.7) into (4.23), we find that the dominant part of the
right-hand side of (4.23) is of order unity, i.e.

∂φ
(2)
2

∂rm

= O(µ0) on rm = a. (4.24)

Since the boundary value is effective over the small circumference ka = O(µ), its effect
on φ

(2)
2 is small. The above finite boundary value is of consequence only at the next

order.
Forced by φ1 and φ

(1)
2 , both of which are Bloch-periodic, φ

(2)
2 must behave likewise,

hence

φ
(2)
2 (x + D, y, z) = eikDφ

(2)
2 (x, y, z). (4.25)

Because the inhomogeneous boundary-value problem for φ
(2)
2 (x, y, z) has the non-

trivial homogeneous solution

ψ± = Z(z) e±ikx (4.26)

we must examine the solvability of the inhomogeneous problem in order to avoid
secularity. This will yield the evolution equations for A+ and A−.

5. Solvability condition and wave envelope equations
Referring to figure 2, let us now define a unit cell of volume V to be the fluid region

within −D/2 � x � D/2, −W/2 � y � W/2, −H � z � 0. Applying Green’s theorem to
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the homogeneous solutions ψ± = Z(z) e±ikx and φ
(2)
2 over V , we obtain

∫∫∫
V

{
φ

(2)
2

(
∇2 +

∂2

∂z2

)
ψ± − ψ±

(
∇2 +

∂2

∂z2

)
φ

(2)
2

}
dV

=

∫∫
∂V

{
φ

(2)
2

∂ψ±

∂n
− ψ± ∂φ

(2)
2

∂n

}
dS. (5.1)

The boundary surface ∂V consists of the seabed, the free surface, the periodic
boundaries SP ± at x = ±D/2 and the sidewalls SW±. Since the cylinder radius is very
small, contributions from the cylinder volume or surface are negligible with error of
O(µ2). Thus, it follows from (3.8) and (4.19) that the volume integral on the left-hand
side of (5.1) is

LHS(5.1) = 2

∫∫∫
V

ψ± ∂2φ1

∂x∂x1

dV

= 2

∫ 0

−H

Z2(z) dz

∫ W/2

−W/2

dy

∫ D/2

−D/2

e±ikx

(
ik

∂A+

∂x1

eikx − ik
∂A−

∂x1

e−ikx

)
dx

= ∓2ikDW
∂A∓

∂x1

∫ 0

−H

Z2(z) dz. (5.2)

The small area of the cylinder is ignored. The surface integral over the seabed vanishes.
Using (4.20), the surface integral over the free surface is

∫∫
SF

{
φ

(2)
2

∂ψ±

∂z
− ψ± ∂φ

(2)
2

∂z

}
dS = −2iω

g

∫∫
SF

ψ± ∂φ1

∂t1
dS

= −2iω

g
Z2(0)

∫ W/2

−W/2

dy

∫ D/2

−D/2

e±ikx

(
∂A+

∂t1
eikx +

∂A−

∂t1
e−ikx

)
dx

= −2iωDW

g
Z2(0)

∂A∓

∂t1
. (5.3)

It is easy to see that the remaining integrals in (5.1) are all linear in A+ and A−,
hence Green’s formula should yield two linear partial differential equations of first
order coupling A±. The derivations of the remaining coefficients are provided in
Appendix B; here we cite the simple results:

∂A+

∂t1
+ Cg

∂A+

∂x1

= −1

2
iΩ0(−A+ + 3A−), (5.4a)

∂A−

∂t1
− Cg

∂A−

∂x1

= −1

2
iΩ0(−A− + 3A+), (5.4b)

where Cg denotes the group velocity and

Ω0 =
πCg

kDW
=

Cg

nBW
(5.5)
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is the coupling constant between the incident and reflected waves. Returning to physi-
cal coordinates according to (3.2) and using µ = ka, the envelope equations† are

∂A+

∂t
+ Cg

∂A+

∂x
= −1

2
i(ka)2Ω0(−A+ + 3A−), (5.6a)

∂A−

∂t
− Cg

∂A−

∂x
= −1

2
i(ka)2Ω0(−A− + 3A+). (5.6b)

The coupling of the transmitted and reflected waves is naturally stronger for larger
cylinders, and for a narrower channel. In open water without cylinders, the equations
for A+ and A− are decoupled:

∂A±

∂t1
± Cg

∂A±

∂x1

= 0, a = 0, (5.7)

which are well known for dispersive water waves in unobstructed sea.
We remark that when a train of water waves propagates over sinusoidal sandbars

whose wavelength is half the water wavelength, the equations for the transmitted and
reflected wave envelopes are similar but with differences:

∂A+

∂t1
+ Cg

∂A+

∂x1

= −iΩBA−, (5.8a)

∂A−

∂t1
+ Cg

∂A−

∂x1

= −iΩBA+, (5.8b)

where the coupling coefficient ΩB is proportional to the bar amplitude (Mei 1985).
To see the reason for this difference and for the numerical factors 1 and 3 on the
right-hand sides of (5.6a) and (5.6b), we note that for sand bars of small steepness,
kaB =O(µ), the reflection coefficient of one bar is of O(µ) but the transmission
coefficient is changed from unity by O(µ2) due to energy conservation (|R|2+|T |2 = 1).
The cumulative effect of Bragg resonance is to transfer energy from waves in one
direction to waves in the opposite direction. However for scattering by a single
cylinder in a channel Miles (1982) has shown that

R = −µ2

(
3πi

2kW

)
+ µ4

(
3π2

4k2W 2

)
+ O(µ6), (5.9a)

T = 1 + µ2

(
πi

2kW

)
− µ4

(
5π2

4k2W 2

)
+ O(µ6), (5.9b)

which satisfies |R|2 + |T |2 = 1 up to the accuracy of O(µ8). Thus, both the transmitted
and reflected waves are affected at the same order, O(µ2), by scattering, and at the ratio
of 3 to 1. With many cylinders Bragg resonance of waves in one direction produces
comparably large cumulative effects on waves propagating in both the forward and
backward directions. Thus, in (5.4a) for the right-going envelope A+, the forcing comes
from both the left-going wave A− and the right-going wave A+, with the intensity
ratio of 3 to 1. Similarly, in (5.4b) for the left-going envelope A−, the forcing comes
from the right-going wave A+ and the left-going wave A−, with the same intensity
ratio. Numerical confirmation of the coupled-mode equations will be given in § 9.

An immediate consequence of the envelope equations is the following energy
identity. Multiplying (5.4a) with the complex conjugate A+,∗, and adding the result to

† Similar equations in the optics of layered media are called coupled-mode equations (Yariv &
Yeh 1984).
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its complex conjugate, we obtain

1

2

(
∂ |A+|2

∂t1
+ Cg

∂ |A+|2
∂x1

)
=

1

2
iΩ0(−3A+,∗A− + 3A+A−,∗). (5.10)

Applying the same procedure to (5.4b), we obtain

1

2

(
∂ |A−|2

∂t1
− Cg

∂ |A−|2
∂x1

)
=

1

2
iΩ0(3A+,∗A− − 3A+A−,∗). (5.11)

The sum of (5.10) and (5.11) gives the law of wave energy conservation:

∂

∂t1
(|A+|2 + |A−|2) + Cg

∂

∂x1

(|A+|2 − |A−|2) = 0. (5.12)

Thus, the growth or decay of wave energy between two stations x and x + dx is
balanced by the net influx of energy at the two ends.

We now study the physical implications of the envelope equations for several
examples, restricting attention to the case nB = 1 or kD = π, the first Bragg resonance.
For other integral values of nB , a similar treatment can be carried out.

6. Dispersion of a transient wave packet in an infinite domain
From (5.4a) and (5.4b), A± can be expressed in terms of A∓:

A− =
2i

3Ω0

(
∂A+

∂t1
+ Cg

∂A+

∂x1

− 1

2
iΩ0A

+

)
. (6.1)

A+ =
2i

3Ω0

(
∂A−

∂t1
− Cg

∂A−

∂x1

− 1

2
iΩ0A

−
)

. (6.2)

Substituting (6.1) in (5.4b) or (6.2) in (5.4a), we find the governing equation for either
envelope: (

∂2

∂t2
1

− iΩ0

∂

∂t1
− C2

g

∂2

∂x2
1

+ 2Ω2
0

)
A± = 0, (6.3)

which differs from the Klein–Gordon equation by the appearance of the second term.
Consider the following solutions in an infinite domain:

A±(x1, t1) = A0 e±iKx1−iΩt1 (6.4)

where µ2K and µ2Ω correspond to detuning of wavenumber and frequency
respectively. Equation (6.3) gives the dispersion relation:

K2 =
Ω2 + Ω0Ω − 2Ω2

0

C2
g

=

(
Ω0

Cg

)2(
Ω

Ω0

+ 2

)(
Ω

Ω0

− 1

)
. (6.5)

Thus for real Ω , K is complex, which is plotted in figure 3. Within the dimensionless
band gap −2 <Ω/Ω0 < 1, the envelope wavenumber K is imaginary. Propagation is
forbidden in this stopping band. Spatial attenuation is the greatest at Ω/Ω0 = −1/2.
In contrast, Bragg resonance by sand bars (Mei 1985) attains its maximum spatial
attenuation at perfect detuning Ω/Ω0 = 0. In physical units, the band gap width
is 3k2a2Ω0 = 3k2a2Cg/W which is inversely proportional to the channel width W .
Outside the dimensionless band gap, Ω/Ω0 � −2, or Ω/Ω0 � 1, K is real and the
wave envelopes behave as dispersive progressive waves.
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Figure 3. Dispersion relation of water waves through infinite periodic cylinders.
Solid curve: Re(KCg/Ω0), dashed curve: Im(KCg/Ω0).

In order to see the physical consequence of envelope dispersion let us consider the
transient evolution of a wave packet initially consisting only of right-going waves:

A+(x1, 0) =

{
1
2
(1 + cos πx1/L), |x1| � L,

0, |x1| > L,
and A−(x1, 0) = 0, −∞ < x1 < ∞.

(6.6)
Employing the exponential Fourier transform and its inverse,

F̄ (α) =

∫ ∞

−∞
e−iαx1F (x1) dx1, F (x1) =

1

2π

∫ ∞

−∞
eiαx1 F̄ (α) dα, (6.7)

we find the transforms of the initial envelopes

Ā0(α) ≡ Ā+(α, 0) =
π2 sinαL

αL2(π2/L2 − α2)
, Ā−(α, 0) = 0. (6.8)

The solution is

A±(x1, t1) =
1

2π

∫ ∞

−∞
dα F±

1 (α) eiαx1+iσ1(α)t1 +
1

2π

∫ ∞

−∞
dαF±

2 (α) eiαx1+iσ2(α)t1, (6.9)

with the amplitude spectra[
F+

1 (α)

F+
2 (α)

]
=

(
1

2
∓ αCg√

4α2C2
g + 9Ω2

0

)
Ā0(α), (6.10a)

[
F−

1 (α)

F−
2 (α)

]
= ∓ 3Ω0

2
√

4α2C2
g + 9Ω2

0

Ā0(α), (6.10b)
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and the frequency functions

[
σ1(α)

σ2(α)

]
=

⎡
⎣ 1

2

(
Ω0 +

√
9Ω2

0 + 4α2C2
g

)
> 0

1
2

(
Ω0 −

√
9Ω2

0 + 4α2C2
g

)
< 0

⎤
⎦, (6.11)

which are of opposite sign. The asymptotic behaviour of the two integrals in (6.9) as
seen at large t1 by an observer travelling at some fixed speed ξ = x1/t1 can be found
by the method of stationary phase.

Let the phase functions in (6.9) be defined by

f1(α) = αξ + σ1(α), f2(α) = αξ + σ2(α). (6.12)

Each can have its own stationary phase point at α∗
1 or α∗

2 satisfying

−ξ =
dσ1

dα
=

2α∗
1C

2
g√

9Ω2
0 + 4α∗

1
2
C2

g

, −ξ =
dσ2

dα
=

−2α∗
2C

2
g√

9Ω2
0 + 4α∗

2
2
C2

g

. (6.13)

Equations (6.13) are solved to find the points of stationary phase:

α∗
1 = − 3Ω0ξ

2Cg

√
C2

g − ξ 2
, α∗

2 =
3Ω0ξ

2Cg

√
C2

g − ξ 2
, (6.14)

which exist only when −Cg < ξ <Cg . Physically, µ2α∗
1 and µ2α∗

2 are the wavenumbers
of sinusoidal envelope waves.

By the standard theory of stationary phase, the large-time approximation of (6.9)
is

A±(x1, t1) ≈ F±
1 (α∗

1) ei(α∗
1x1+σ1(α

∗
1 )t1+π/4)√

2πσ ′′
1 (α∗

1)t1
+

F±
2 (α∗

2) ei(α∗
2x1+σ2(α

∗
2 )t1+π/4)√

2πσ ′′
2 (α∗

1)t1
, (6.15)

where [
σ ′′

1 (α∗
1)

σ ′′
2 (α∗

2)

]
=

2
(
C2

g − ξ 2
)3/2

3Ω0Cg

> 0. (6.16)

Thus a moving observer sees two sinusoidal envelope waves with amplitudes decaying
in time as t

1/2
1 . At any fixed t1, the envelope-wave amplitude is the largest, while its

wavelength is the shortest, near the front. The reverse is true near the origin. At the
front the approximation breaks down. A better approximation is possible but not
pursued here (see e.g. Kajiura 1963 or Mei 1989 for an open sea).

To an observer travelling to the right at a fixed speed lower than the group
speed of the carrier wave, 0<ξ <Cg , two sinusoidal envelope waves are seen. Since
(α∗

1 < 0, σ1(α
∗
1) > 0) and (α∗

2 > 0, σ2(α
∗
2) < 0), both envelope waves propagate rightward

(away from the origin). Since |α∗
1 | = |α∗

2 | and σ1(α
∗
1) > σ2(α

∗
2), both envelope waves

have the same local wavelength but different frequencies, corresponding to the two
branches of the dispersion diagram in figure 3. The first (with subscript 1) advances
faster than the second. Within each envelope wave there are monochromatic and
progressive carrier waves of frequency ω and wavenumber k propagating in two
opposite directions. The local amplitudes of these opposing carrier waves are different.
For example, in the faster envelope wave, the right-going and left-going carrier waves
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have the amplitude ratio

|F+
1 (α∗

1)|
|F−

1 (α∗
1)|

=

√
α∗

1
2
C2

g + 9
4
Ω2

0 + |α∗
1 |Cg

3
2
Ω0

> 1, (6.17)

hence their sum constitutes a partially standing carrier wave. Standing carrier waves
with the same amplitude ratio reside in the slower envelope wave since α∗

2 = |α∗
1 |.

Similarly, two sinusoidal envelope waves are also seen by an observer travelling to
the left at a speed lower than the group speed of the carrier wave, −Cg < ξ < 0. Since
(α∗

1 > 0, σ1(α
∗
1) > 0) and (α∗

2 < 0, σ2(α
∗
2) < 0), both envelope waves propagate leftward.

Again in each envelope wave the opposing carrier waves form a partially standing
wave.

Also, in view of (6.8), the wave envelopes have moving nodes at

sin α∗
1,2L = 0 (6.18)

which occur at
3Ω0ξL

2Cg

√
C2

g − ξ 2
= nπ, n = 0, 1, . . . . (6.19)

Thus the nodes move to the right at the constant speed of

ξ =
x1

t1
= ± Cg

[1 + (3Ω0L/(2nπCg))2]1/2
, n = 0, 1, . . . . (6.20)

At these nodes, the observer sees no wave.

7. A semi-infinite line of cylinders and wave trapping
We consider next the Bragg scattering of water waves by a semi-infinite line of

periodic cylinders covering the range 0<x1 < ∞. Let the rightward incident wave and
the leftward reflected wave be

A+(x1, t1) = A0T (x1) e−iΩt1, A−(x1, t1) = A0R(x1) e−iΩt1, x1 > 0, (7.1)

where T and R represent local transmission and reflection coefficients respectively. It
is easy to show that

T = e−QΩ0x1/Cg , R(x1) = R(0) e−QΩ0x1/Cg (7.2)

where

Q =

√(
Ω

Ω0

+ 2

)(
1 − Ω

Ω0

)
. (7.3)

Within the band gap −2 <Ω/Ω0 < 1, Q is real, hence waves are localized within the
dimensionless distance Cg/Ω0Q. In particular the reflection coefficient at the entrance
x1 = 0 is

R(0) =
3

1 + 2(Ω/Ω0) + 2iQ
= eiΘ, (7.4)

Reflection is perfect with the phase change

Θ = arg

(
1 +

2Ω

Ω0

− 2iQ

)
. (7.5)
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Figure 4. Natural detuned frequencies of trapped envelopes Ω∗
n/Ω0 against Ω0L/Cg , the

dimensionless width of an open strip sandwiched between two long strips of cylinders.

Similarly if the cylinders are distributed instead on the left, −∞ <x1 < 0, and a
leftward incident wavetrain arrives from x1 > 0, the envelopes of right- and left-going
waves in the region x1 < 0 are respectively

B+ = B0R(0) eΩ0Cgx1/Q e−iΩt1, B− = B0 eΩ0Cgx1/Q e−iΩt1 . (7.6)

Let us now consider a strip −L < x1 <L of open water (cylinder-free) sandwiched
by two semi-infinite domains of cylinders. The envelopes of right- and left-going
waves are respectively C eiKx1 and D e−iKx1 , where K = Ω/Cg . Changing x1 to x1 − L

in (7.1) and to x1 + L in (7.6), then matching at the junctions x1 = −L and x1 =L,
obtain

B0R(0) = C e−iKL, B0 = D eiKL, C eiKL = A0, D e−iKL = A0R(0). (7.7)

This is a set of homogeneous equations for the coefficients A0, B0, C and D. Non-
trivial solution requires that

sin(2KL + Θ) = 0 (7.8)

which is the eigenvalue condition for Ω . Using (7.5) the natural detuning frequencies
Ω∗

n of the wave envelope are given implicitly by

2
Ω0L

Cg

Ω∗
n

Ω0

+ Θ = nπ, n = 0, ±1, . . . . (7.9)

At each eigenfrequency Ω∗
n , the wave envelopes are trapped in the centre strip.

Real solutions of (7.9) lie within the range −2 <Ω∗
n/Ω0 < 1, which indicates that

trapped modes are present only when the detuning frequency lies within the band
gap.

Figure 4 shows the dependence of non-dimensional eigenfrequencies Ω∗
n/Ω0 on the

dimensionless centre strip length Ω0L/Cg . It can be seen that the number of trapped
modes increases with the strip length for different n.
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8. Scattering by a finite strip of periodic cylinders
8.1. Governing equations and boundary conditions

As another application, we consider a large but finite number of periodic cylinders in
the strip 0 � x1 � L, bounded by open waters outside. The incident wavetrain arrives
from x ∼ −∞ with the wavenumber k + µ2K slightly detuned from Bragg resonance.
The corresponding frequency is shifted by the amount µ2Ω = µ2CgK , where K and
Ω are of order unity,

A+(x1, t1) = A0e
i(Kx1−Ωt1). (8.1)

In the cylinder region, we assume the envelopes to be of the form

A+(x1, t1) = A0T (x1) e−iΩt1, A−(x1, t1) = A0R(x1) e−iΩt1, (8.2)

where T (x1) and R(x1) are the local transmission and reflection coefficients,
respectively. It follows readily from the evolution equation (6.3) that

d2

dx2
1

(
T

R

)
+

Ω2
0

C2
g

(
Ω

Ω0

+ 2

)(
Ω

Ω0

− 1

) (
T

R

)
= 0. (8.3)

It is evident that both T (x1) and R(x1) are oscillatory in x1 if Ω/Ω0 lies outside the
band gap and monotonic within. From (6.1) we also find

R =
2

3

(
Ω

Ω0

+
1

2

)
T +

2iCg

3Ω0

dT

dx1

. (8.4)

Clearly T (0) = 1 at the entrance and R(L) = 0 at the exit. Substituting (8.2) into the
energy conservation equation (5.12), we obtain after integration

|T (x1)|2 − |R(x1)|2 = 1 − |R(0)|2 = |T (L)|2, (8.5)

or |R(0)|2 + |T (L)|2 = 1.
The solution of the boundary value problem is straightforward. We only examine

the results in various parts of the frequency band.

8.2. Outside the band gap

Let the detuning frequency be in the range either Ω/Ω0 < −2 or Ω/Ω0 > 1. The
solution for any x1 in the strip is

T (x1) =
−[1 + 2(Ω/Ω0)] sin[[PΩ0L/Cg](x1/L−1)]+2iP cos[[PΩ0L/Cg](x1/L−1)]

[1 + 2(Ω/Ω0)] sin[PΩ0L/Cg] + 2iP cos[PΩ0L/Cg]
,

(8.6a)

R(x1) =
−3 sin[[PΩ0L/Cg](x1/L − 1)]

[1 + 2(Ω/Ω0)] sin[PΩ0L/Cg] + 2iP cos[PΩ0L/Cg]
, (8.6b)

where

P =
√

(Ω/Ω0 + 2)(Ω/Ω0 − 1) (8.7)

is real. The scattering coefficients depend also on the dimensionless width of the strip
Ω0L/Cg .

In particular, the transmission coefficient at the exit is

T (L) =
2iP

[1 + 2(Ω/Ω0)] sin[PΩ0L/Cg] + 2iP cos[PΩ0L/Cg]
, (8.8)
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Figure 5. Reflection intensity along the array for various Ω0L/Cg with detuning parameter
Ω/Ω0 = 0.5. Thick solid curve: Ω0L/Cg = 1, thin solid curve: Ω0L/Cg = 4, dashed curve:
Ω0L/Cg =8.

and the reflection coefficient at the entrance is

R(0) =
3 sin(PΩ0L/Cg)

[1 + 2(Ω/Ω0)] sin[PΩ0L/Cg] + 2iP cos[PΩ0L/Cg]
. (8.9)

8.3. Within the band gap −2 < Ω/Ω0 < 1

The parameter P in (8.7) is purely imaginary. Let P = iQ, where

Q = −iP =
√

(Ω/Ω0 + 2)(1 − Ω/Ω0) (8.10)

is real. We find from (8.6a) and (8.6b)

T (x1) =
−[1+2(Ω/Ω0)]sinh[[QΩ0L/Cg](x1/L−1)]+2iQ cosh[[QΩ0L/Cg](x1/L−1)]

[1 + 2(Ω/Ω0)] sinh[QΩ0L/Cg] + 2iQ cosh[QΩ0L/Cg]
,

(8.11a)

R(x1) =
−3 sinh[[QΩ0L/Cg](x1/L − 1)]

[1 + 2(Ω/Ω0)] sinh[QΩ0L/Cg] + 2iQ cosh[QΩ0L/Cg]
. (8.11b)

The transmission coefficient at the exit is

T (L) =
2iQ

[1 + 2(Ω/Ω0)] sinh[QΩ0L/Cg] + 2iQ cosh[QΩ0L/Cg]
, (8.12)

and the reflection coefficient at the entrance is

R(0) =
3 sinh[QΩ0L/Cg]

[1 + 2(Ω/Ω0)] sinh[QΩ0L/Cg] + 2iQ cosh[QΩ0L/Cg]
. (8.13)

From (8.7) and (8.10), one can easily verify that, for any two incident waves with
detuning frequencies Ω and Ω ′ which are mirror images of each other with respect
to the centre of the band gap, i.e. (Ω + Ω ′)/Ω0 = −1/2, their spatial distributions of
|R(x1)| and |T (x1)| are identical. Thus we only present results for Ω/Ω0 � −1/2.

Figure 5 shows the spatial variation of the reflection coefficient |R(x1)|2 for
Ω/Ω0 = 1/2 as a function of the dimensionless width of the cylinder strip Ω0L/Cg . The



178 Y. Li and C. C. Mei

4

8

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

x1/L

|R(x1)|2

Ω0L
——
Cg

= 1

Figure 6. Reflection intensity along the array for various Ω0L/Cg with detuning parameter
Ω/Ω0 = 2.0. Thick solid curve: Ω0L/Cg = 1, thin solid curve: Ω0L/Cg = 4, dashed curve:
Ω0L/Cg = 8.

results are typical of all cases within the band gap, i.e. |R(x1)|2 decreases monotonically
with the distance x1 from the entrance. As L increases, the reflection coefficient at the
entrance R(0) approaches unity, implying complete reflection.

In figure 6, we display the reflected energy intensity |R(x1)|2 for Ω/Ω0 = 2.0. The
oscillatory feature is representative of all cases outside the band gap. Local reflection
vanishes at

x1 = L +
mπCg

PΩ0

, m = −
[
PΩ0L

πCg

]
, . . . , −1, 0, (8.14)

where the square bracket [PΩ0L/πCg] represents the largest integer less than PΩ0L/

πCg .
In figure 7, the reflection coefficient at the entrance is plotted against the detuning

parameter Ω/Ω0 for various dimensionless strip lengths Ω0L/Cg . When −2 � Ω/

Ω0 � 1 within the band gap, reflection increases monotonically and approaches
unity as the strip length increases. When the detuning Ω/Ω0 is outside the band
gap, |R(0)|2 is oscillatory with respect to Ω0L/Cg . From (8.9), zero reflection or
perfect transmission is reached at PΩ0L/Cg = mπ where m is any integer. Reflection
diminishes as the detuning frequency increases.

For a fixed strip lengths Ω0L/Cg , the dependence of the reflection coefficient on
the detuning frequency is illustrated in figure 8. Within the band gap −2 � Ω/Ω0 � 1
(only the upper half −1/2 � Ω/Ω0 � 1 is shown), |R(0)|2 decreases monotonically as
Ω/Ω0 increases. The reflection coefficient approaches unity quickly with increasing
strip length. Outside the band gap, Ω/Ω0 > 2, |R(0)|2 is oscillatory and in general
decreases with increasing Ω/Ω0, which can be a result of a wider channel. It can be
derived from (8.7) and (8.9) that no wave is reflected by the strip when

Ω/Ω0 = −1

2
±

√
mπ

Ω0L/Cg

+
9

4
, m is any integer � −9Ω0L/Cg

4π
. (8.15)
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various detuning parameter values Ω/Ω0 = 0.5, 1.0, 1.5, 2.0, 5.

1.0

0.5
8.0

4.0 =

–0.5 10 2 3 4
0

0.2

0.4

0.6

0.8

1.0

Ω/Ω0

|R(0)|2

Ω0L
——
Cg

Figure 8. Dependence of the reflection intensity at x1 = 0 on detuning parameter Ω/Ω0 for
various strip length values Ω0L/Cg = 0.5, 1.0, 4.0, 8.0.

From (8.9), the oscillation of |R(0)|2 with respect to Ω becomes faster for a longer
strip.

9. Comparison with numerical solution by finite elements
In order to see the range of validity of the asymptotic theory we have carried

out direct numerical computation for the linear wave scattering problem around a
large but finite number of circular cylinders in a channel. The hybrid finite element
method developed by earlier authors (Bai & Yeung 1974; Chen & Mei 1974a ,b; Yue,
Chen & Mei 1978; Li & Mei 2006) was used. In that method, which is applicable
in principle for scatterers of arbitrary size and geometry, the fluid domain is first
divided into the near field enclosing all the scatterers, and the far field of open
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Figure 9. Transmission and reflection coefficients for a row of 21 (N = 10) circular cylinders
of radius a/D = 0.10, D/W = 1. Solid curve: asymptotic solution; dashed curve: finite element
solution.

waters. The velocity potential in the near field is discretized by finite elements, while
the far field is represented by analytical solutions such as eigenfunction expansions.
A variational principle is derived to replace the boundary value problem and the
matching conditions. Extremization with respect to all unknown nodal and expansion
coefficients leads to a matrix equation which is then solved numerically.

We shall only display a few sample comparisons here; more extensive comparisons
have been documented in Li (2006). Results have been obtained by the hybrid element
method for 0<kD < 2π which includes the entire neighbourhood of the first Bragg
resonance peak kD = π and part of the second peak at kD =2π. For 21 cylinders
(N = 10) numerical simulations have been carried out for a/D = 0.10, 0.15. For
comparison, results from the analytical formulae are obtained for the neighbourhoods
of kD = π and kD = 2π separately. Specifically, for wavenumbers kD ∈ [0, 3π/2]
(around the first peak), we apply the asymptotic theory for the detuning wavenumber

KD =
kD − k1D

µ2
=

kD − k1D

(k1a)2
=

(kD − π)

π2(a/D)2
.

For wavenumbers in kD ∈ [3π/2, 2π] (around the second peak), the theory is applied
for the detuning wavenumber

KD =
kD − k2D

µ2
=

kD − k2D

(k2a)2
=

(kD − 2π)

4π2(a/D)2
.

Figures 9 and 10 are two sample comparisons for the transmission coefficient
at the exit and the reflection coefficient at the entrance. For a/D = 0.10, the
detuning frequency range is KD ∈ [−100/π, 50/π] near the first resonance and
KD ∈ [−25/2π, 0] near the second resonance. For a/D = 0.15, the corresponding
detunings are KD ∈ [−400/9π, 200/9π] and [−50/9π, 0] respectively. It can be seen
that for sufficiently small cylinders, the asymptotic theory predicts very well the
location and magnitude of the reflection and transmission coefficients at and around
the first peak of Bragg resonance at kD = π for both a/D =0.1 and 0.15. The
agreement near the second peak is less satisfactory and deteriorates as a/D increases.
This is understandable since for the larger cylinder a/D = 0.15, µ2 = (πa/D)2 = 0.222
at the first peak but µ2 = (2πa/D)2 = 0.888 at the second peak, which is not small.

In figure 11 we increase the number of cylinders to 41 (N =20) for the smaller ratio
a/D = 0.10 with D/W = 1. Note first that with more cylinders reflection is greatly
enhanced and transmission reduced near both peaks. The quantitative agreement with
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Figure 10. As figure 9 but for a/D = 0.15.
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Figure 11. As figure 9 but for a row of 41 (N = 20) circular cylinders of radius a/D = 0.10,
D/W = 1. Solid curve: asymptotic solution; dashed curve: finite element solution.

numerical computations is excellent due to the smallness of µ2 = 0.0987 at the first
peak and µ2 = 0.3948 at the second peak.

10. Summary remarks
We have developed an asymptotic theory for the scattering of infinitesimal water

waves by a long array of cylinders in a channel. This is an extension of earlier works
where the geometries were strictly one-dimensional. Combining Bloch’s theorem
with the multiple-scale approximation, envelope equations (also called coupled mode
equations in optics (Yariv & Yeh 1984)) are derived for the long-scale variations.
Analytical solutions for both transient and quasi-steady incident waves are obtained
and the accuracy is confirmed by direct numerical simulation. It is worth pointing
that the asymptotic theory not only enhances physical discussions, but also remains
computationally efficient as the number of scatterers increases. These advantages are
not shared by the more numerical methods. For ocean engineering applications, the
effects of vortex shedding around small cylinders must of course be accounted for in
the future, not only for better modelling of the wave forces but for the variation of
wave amplitudes in the region of scatterers. For two-dimensional scattering of sound
by parallel cylinders, vortex shedding is unlikely to be important, and the present
theory can be applied with greater assurance.
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Extensions to second-order nonlinear effects and to two-dimensional arrays will be
reported elsewhere.
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04-1-0077), US National Science Foundation (Grant CTS 007573) and US–Israel
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Physics, Fudan University, Shanghai, China, partly stimulated the present study.

Appendix A. Bloch’s condition and the solution for χ

In order to satisfy Bloch’s condition, we need to ensure that the product e±ikxφ
(1)
2 =

e±ikxχ(x, y)Z(z) is periodic in x with period D. Since e±ikx = e∓ikD e±ik(x+D) and
eikD = einBπ = e−ikD , χ(x, y) must have the following translational property:

χ(x + D, y, z; x1, t1) = eikDχ(x, y, z; x1, t1). (A 1)

Note that rm and θm depend on x such that

rm(x) =

√(
x − xo

m

)2
+ y2 =

√(
x + π/k − xo

m+1

)2
+ y2 = rm+1(x + π/k),

θm(x) = tan−1 x − xo
m

y
= tan−1 x + π/k − xo

m+1

y
= θm+1(x + π/k).

It follows that

χ

(
x + D, y, z

)

=

N∑
m=−N

{[
BY

mY0(krm) + BJ
mJ0(krm)

]
+

[
CY

mY1(krm) + CJ
mJ1(krm)

]
cos θm

+
[
DY

mY2(krm) + DJ
mJ2(krm)

]
cos 2θm

}
x+D

=

N∑
m=−N

{[
BY

mY0(krm−1) + BJ
mJ0(krm−1)

]
+

[
CY

mY1(krm−1) + CJ
mJ1(krm−1)

]
cos θm−1

+
[
DY

mY2(krm−1) + DJ
mJ2(krm−1)

]
cos 2θm−1

}
x

=

N+1∑
m=−N+1

{[
BY

m+1Y0(krm) + BJ
m+1J0(krm)

]
+

[
CY

m+1Y1(krm) + CJ
m+1J1(krm)

]
cos θm

+
[
DY

m+1Y2(krm) + DJ
m+1J2(krm)

]
cos 2θm

}
x
, (A 2)

where use is made of the fact that N = O(µ−2) and that the effect of shifting the
whole cylinder array to the right or left by a distance of D introduces a negligible
difference of O(µ2) to the series. Substituting (A 2) into (A 1) and comparing the
resulting equation with (4.15), we find

BY
m+1 = eikDBY

m, CY
m+1 = eikDCY

m, DY
m+1 = eikDDY

m, (A 3a)

BJ
m+1 = eikDBJ

m, CJ
m+1 = eikDCJ

m, DJ
m+1 = eikDDJ

m. (A 3b)

The relations (A 3a) are satisfied by (4.17a, b, c).



Bragg scattering by a line array of small cylinders 183

Using (A 3), we can write (4.15) as

χ =

N∑
m=−N

[
BY

0 Y0(krm) + BJ
0 J0(krm)

]
eimkD

+

N∑
m=−N

[
CY

0 Y1(krm) + CJ
1 J1(krm)

]
eimkD cos θm

+

N∑
m=−N

[
DY

0 Y2(krm) + DJ
1 J2(krm)

]
eimkD cos 2θm. (A 4)

Let us first investigate the boundedness of the first series on the right-hand side of
(A 4). For large |m| and fixed x, krm ≈ |m|kD � 1. The asymptotic approximation of
Y0 and J0 for large arguments gives (see equations 9.2.1 and 9.2.2 in Abramowitz &
Stegun 1972),

Y0(krm) ≈ Y0(|m|kD) =

√
2

|m|πkD
sin

(
|m|kD − π

4

)
+ O

(
1

|m|3/2

)

= − cos mkD√
|m|πkD

+ O

(
1

|m|3/2

)
, (A 5a)

J0(krm) ≈ J0(|m|kD) =

√
2

|m|πkD
cos

(
|m|kD − π

4

)
+ O

(
1

|m|3/2

)

=
cos mkD√

|m|πkD
+ O

(
1

|m|3/2

)
, (A 5b)

because kD = nBπ. Since eimkD = cosmkD = (−1)mnB , it follows that the mth term in
the first series of (A 4) approaches, for large |m|,

(
−BY

0 + BJ
0

)[ cos mkD√
|m|πkD

+ O

(
1

|m|3/2

)]
eimkD =

(
−BY

0 + BJ
0

)
√

|m|πkD
+ O

(
1

|m|3/2

)
.

To ensure that the first series in (A 4) is bounded as N → ∞ we can only choose
BJ

0 = BY
0 , which implies, in view of (A 3a, b),

BJ
m = BY

m = eimkDBY
0 . (A 6)

Similar analysis for the remaining two sums in (A 4) shows that

CJ
m = CY

m, DJ
m = DY

m = O(µ2). (A 7)

With these choices, (4.15) reduces to (4.18), after omitting terms of O(µ2).

Appendix B. Coefficients of the envelope equations
Referring to figure 2, on the end surfaces of the cell SP ±: x = ± 1

2
D, |y| � 1

2
W,

−H � z � 0, both ψ± and φ
(2)
2 and their x derivatives have identical magnitudes but

opposite signs. Hence the surface integral vanishes,∫∫
SP

{
φ

(2)
2

∂ψ±

∂n
− ψ± ∂φ

(2)
2

∂n

}
dS = 0. (B 1)
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Care must be taken for the surface integral over the channel sidewalls SW±: y =
± 1

2
W, |x| � 1

2
D, −H � z � 0. Since the normal gradient of ψ± vanishes, it follows from

(4.21) and (4.14) that the channel-wall integral reduces to

∫∫
SW

{
φ

(2)
2

∂ψ±

∂n
− ψ± ∂φ

(2)
2

∂n

}
dS=

∫ 0

−H

Z2(z) dz

∫
CW±

e±ikx ∂χ

∂n
d�, (B 2)

where CW+ and CW− are the waterlines along the sidewalls Sw+ and Sw− shown in
figure 2. Noting that both e±ikx and χ satisfy the Helmholtz equation on the free
surface SF shaded in figure 2,

(∇2 + k2){e±ikx, χ} = 0 on SF , (B 3)

we invoke Green’s formula

0 =

∫∫
SF

{e±ikx(∇2 + k2)χ − χ(∇2 + k2) e±ikx} dS

=

∫
∂SF

{
e±ikx ∂χ

∂n
− χ

∂e±ikx

∂n

}
d�, (B 4)

where ∂SF includes CW±, the two transverse boundaries CP ± and the cylinder waterline
C0. It follows from (B 4) that

∫
CW±+CP ±

{
e±ikx ∂χ

∂n
− χ

∂e±ikx

∂n

}
d� =

∫
C0

{
e±ikx ∂χ

∂r
− χ

∂e±ikx

∂r

}
d�, (B 5)

where the integration along C0 is counter-clockwise. On the line boundaries CW±,

∂e±ikx

∂n
= ±∂e±ikx

∂y
= 0.

The line integrals along CP+ and CP − cancel each other since both e±ikx and χ and
their x-derivatives have equal magnitudes but opposite signs. Therefore, (B 5) reduces
to ∫

CW±

e±ikx ∂χ

∂n
d� =

∫
C0

{
e±ikx ∂χ

∂r
− χ

∂e±ikx

∂r

}
d�. (B 6)

Thus the line integral (B 2) along the waterlines of the sidewalls is now reduced to
the integral along the waterline of the small cylinder.

We now examine the neighbourhood of the small cylinder. The potential χ in (4.18)
can be written as

χ =
π

4
(A+ + A−)Y0(kr0) − iπ

2
(A+ − A−)Y1(kr0) cos θ0 + O((kr0)

0)

=
1

2
(A+ + A−) ln kr0 + i(A+ − A−)

cos θ0

kr0

+ O((kr0)
0), kr0 = O(µ) � 1, (B 7)

where the approximate expressions of Bessel functions for small arguments have been
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used. Thus the integral can be approximated by∫
C0

χ
∂e±ikx

∂r
d� =

∫
C0

±ik cos θ0 e±ika cos θ0χ d�

=

∫
C0

±ik cos θ0

{
A+ + A−

2
ln ka + i(A+ − A−)

cos θ0

ka
+ O(1)

}
d� + O(µ)

=

∫ 2π

0

∓(A+ − A−) cos2 θ0 dθ0 + O(µ) = ∓π(A+ − A−) + O(µ), (B 8)

which is contributed by the dominant term Y1(kr0) cos θ0.
From (B 7), the radial gradient along the circles C0 pointing out of the fluid domain

can be approximated by

∂χ

∂r

∣∣∣∣
C0

=
(A+ + A−)

2r0

− (A+ − A−)
i cos θ0

kr2
0

+ O(1), r0 = a. (B 9)

Thus, ∫
C0

e±ikx ∂χ

∂r
d�

=

∫ 2π

0

e±ika cos θ0

{
(A+ + A−)

2
− i(A+ − A−)

cos θ0

ka

}
dθ0 + O(µ)

=

∫ 2π

0

(1 ± ika cos θ0)

{
(A+ + A−)

2
− i(A+ − A−)

cos θ0

ka

}
dθ0 + O(µ)

= π(A+ + A−) ± π(A+ − A−) + O(µ) = 2πA± + O(µ). (B 10)

Both Y0(kr0) and Y1(kr0) cos θ0 contribute equally to the integral. By inserting (B 8)
and (B 10) into (B 6), it follows that∫

CW±

e±ikx ∂χ

∂n
d� = π(3A± − A∓), (B 11)

up to the leading order in µ. Substituting (B 11) into (B 2), and then the results
(5.2) and (5.3) into Green’s formula (5.1), we finally obtain the evolution equations
coupling A+ and A−,

∂A∓

∂t1
∓ gk

ω

∫ 0

−H

(
Z(z)

Z(0)

)2

dz
∂A∓

∂x1

= − πi

2kDW

gk

ω

∫ 0

−H

(
Z(z)

Z(0)

)2

dz(3A± − A∓). (B 12)

After evaluating the vertical integral

gk

ω

∫ 0

−H

(
Z(z)

Z(0)

)2

dz =
gk

ω

∫ 0

−H

cosh2 k(z + H )

cosh2 kH
dz =

ω

2k

(
1+

2kH

sinh 2kH

)
= Cg, (B 13)

where Cg is the group velocity of a simple progressive wave, (B 12) reduces to (5.4a)
and (5.4b).
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